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PREFACE

In response to requests from computer installations
to provide material describing the programming of JOSSJr
arithmetic and function evaluation routines, this study is
addressed to professional programmers. Attempt is made to
provide answers to the kinds of questions such an audience
might raise if they were interested in producing similar
programs for their own computers. The description of each
routine consists of an analysis section and/or a program
flow and/or commentary on the program flow, the choice
being dictated by what would best serve the needs of

programmers .

TJOSS is the trademark and service mark of The RAND

Corporation for its computer program and services using
that program.
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SUMMARY

This memorandum describes JOSS arithmetic and func-
tion evaluation routines from a programmer's point of view.
JOSS is an experimental, on-line, time-shared computing
service in daily use by staff members of The RAND Corpora-
tion for the solution of small numerical problems. It is
currently operational on a Digital Equipment Corporation
PDP-6 computer.

For the purposes of this study, the JOSS functions are
divided into three groups: arithmetic operations (includ-
ing exponential and square root), elementary transcendental
functions, and number dissection functions.

The four arithmetic operations (add, subtract, multi-
ply, divide) treat the operands as exact nine-digit numbers
and produce true results rounded to nine digits. This is
accomplished by doing integer arithmetic and scaling by
powers of ten, Descriptions of the arithmetic routines are

presented in gross verbal flowcharts, amplified by commen-

af
7

taries. The general exponential routine to compute A * B

factors out error situations and the special cases of B = 0
A =0, B=1, and A an integer power of 10, B = .5, B = -.5
and B an integer with 2 < B < 29, before resorting to
cxpB-log(a) J.

The discussion of the transcendental functions empha-
sizes the analysis done in order to achieve almost nine-
significant-digit accuracy in the results and shows how

special cases are handled in order to hit certain 'magic"

values on the nose (for example, the exponential of 0).
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Program flows of the number dissection functions
(integer part, digit part, fractional part, signum, ex-
ponent part) are next presented. Especially when coupled
with the ability to append an "if"” clause to virtually any
statement, they demonstrate how a sophisticated tool may
be supplied to the user with trivial expenditure of pro-
gramming effort.

Appendixes to the study contain (1) a description of
Routine S75, which converts and normalizes binary answers
to JNF (JOSS Normal Form), and (2) two algorithms for

evaluating series on a computer,
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I. INTRODUCTION

This memorandum describes JOSS' arithmetic and func-
tion evaluation routines from a programmer's point of view.
JOSS is a user-oriented time-sharing system for numerical
computation. It is currently operational on a Digital
Equipment Corporation PDP-6 computer. Descriptions of the
system and its uses appear in the studies listed in the
Bibliography to this memorandum.

One design criterion for JOSS was that it should give
the same results for arithmetic operations as those provided
by a desk calculator. This implies, for example, that the
nine-decimal-digit inputs to the arithmetic routines are
treated as exact and that the outputs are true nine-digit
rounded results. To meet this criterion, JOSS numbers are
represented internally as integers with associated powers
of ten and all arithmetic operations are.performed using
integer arithmetic.

An added advantage of this technique is that "real"
numbers and "integers' need not be differentiated, as is
true for systems representing numbers as fractions with an

associated exponent (for example, floating binary).

DESCRIPTION OF APPROACH

This study is addressed to professional programmers,
in response to requests from computer installations to

provide material describing how the JOSS programming was

Tj0ss is the trademark and service mark of The RAND
Corporation for its computer program and services using
that program.
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done. The general organization of the material into
analysis/flow/commentary sections is intended to supply
the programmer with specific answers on how the analysis
was performed and what the program flow is, with descrip-
tive comments to elucidate the flow. Superfluous infor-
mation, however, has not been included merely for the

sake of symmetry between sections, and therefore the
description of each program is composed of an analysis
section and/or a program flow and/or a commentary section,
the choice being dictated solely by what would best serve

the needs of programmers.

SALIENT MACHINE CHARACTERISTICS

In order to describe JOSS arithmetic and function
evaluation routines, only two characteristics of the

Digital Equipment Corporation PDP-6 computer need be set
forth:

1. The machine is binary, with a fixed 36-bit word
length, and represents negative numbers in 2's
complement form.*t

2. Multiplication of two fixed-point, 36-bit numbers
(optionally) produces a 72-bit product in two
adjacent registers. Division of a 72-bit dividend
by a 36-bit divisor produces a quotient and a
remainder of 36 bits each.

"The 2's complement of a number is obtained by in-
verting all of the bits (changing O's to 1's and 1's to
0's) and then adding a 1 in the least significant bit.
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II. NUMBER REPRESENTATION

The internal representation of a number, Y, in JOSS
consists of

1. A positive integer, Ym’ such that

108 < v, <107 or Y = 0

2. An associated sign YS;
3. An exponent, Ye’ chosen so that
Ye-8
Y| = Y 10

We restrict Ye to ~-100 <« Ye < 100.

Offsetting the exponent by eight is equivalent to as-
suming that Y consists of one whole digit and eight decimal
digits. For example, Y = 123,456789 ig equivalent to
Y = 1.23456789-102; this is represented internally as

Y = 123456789,
m
Y =+,
)
Y =2,
e

This is JOSS Normal Form (JNF) .

All inputs to the arithmetic and function routines
in JOSS are assumed to be in JNF. Output from these
routines is in JNF, except that the exponent range, Ye’
has not been checked.

In this study, we shall use the notation: A and B for
input, C for output, and others (X, Y) for intermediate

quantities. Thus, for example:



1l

il

sign of result,
exponent of second

magnitude of first

input,

input.



-5-

IIT. ARITHMETIC OPERATIONS

The four arithmetic operations (add, subtract, multi-
ply, divide) treat the operands as exact nine-digit numbers
and produce true results, rounded to nine digits. This is

accomplished by doing integer arithmetic and scaling by

powers of ten.
Descriptions of the arithmetic routines will consist
of gross verbal flowcharts, amplified by commentaries.

The following general comments apply to the descriptions:

1. Subtraction (C = A - B) is merely addition with
BS inverted, and will not be described further.

2. The algebraic sign of the result can always be
determined in advance. For addition, it is the
sign of the operand of greater magnitude; for
multiplication and division, it is the exclusive
OR of the signs of the two operands.

3. Since the sign of the result is predetermined,
multiplication and division are carried out ex-
clusively with magnitudes. Addition of numbers
with the same algebraic signs is performed with
magnitudes; if the signs are not the same, the
integer, Yn» of the number of smaller magnitude
is complemented.

4. The following abbreviations have been used:

R = remainder function,

Q = quotient function,

ip = integer part (greatest integer in),
Bn = (n is an integer) binary scale factor.



Flow

1. If B 0, set C A and exit.

2., If A=20, set C = B and exit.
3. If |A| < |B|, interchange A and B.
4., Set p = Ae - Be'

5. If p > 10, set C = A and exit.

6. If A # B , complement B .
S S m
7. Set C = A and C = A .
s S e e
2.(10P.A + B )
8. Set X =Q m
q | 10p i
2.(10P-Am + B)
9, Set Xr = R -
i 10P |

16, 1If Xq = Xr = 0, set C = 0 and exit.
11, If Xq < 2-108, decrementf Ce and set

= ) ) p
X 10 xq + (10 xr)/lo .

q
12. For as long as Xq < 2-108, decrement Ce and set
X =10-x .
q q

13, If Xq > 2-109 -1, i1‘1c::err1entJ'r Ce and set XQ = Xq/lO.

14. Set C_ = (Xq + 1)/2 and exit.

.r - 11
"Decrement' means reduce by one; 'increment' means
increase by one.



Commentary

3.

As a result of this step, A will always be the number
with the greater magnitude. This predetermines both
the sign of the result for step 7, and a preliminary
value for the exponent that will be adjusted during

normalization.

This step determines the amount of decimal shift

required to line up the decimal points.

If p > 10, B can have no effect on the result. On

the other hand, for p = 10, consider

100 000 000

- 000 000 000 06,
99 999 999 94

which, when rounded, gives 999 999 999. Thus, ex-
ponent differences up to and including 10 must be

considered for nine-digit results.

This is the actual addition step. The remainder is

required when, for example,

100 000 000

- 99 999 999 3,
000 000 000 7

The multiplicative factor of 2 produces one additicnal
bit for rounding purposes (see step 14). A.m-lOp

produces a 72-bit product. B, is added to the low

36 bits. If the result of this addition causes an
overflow or is negative, appropriate adjustments must
be made. (The negative result can occur if B was

complemented at step 6.)



11.

12,

13.

Flow
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If normalization is required, only one digit of the
remainder could possibly contribute to the result

(see the example in step 8 of this commentary).

This step continues the normalization process by

bringing in trailing zeros.

In addition to normalizing downward (A and B had the
same algebraic sign), this step also ensures against

an overflow in the rounding step that follows.

MULTIPLY: C = A-B

If Aor B =0, set C = 0 and exit.

Set CS As @ BS (® = exclusive OR).

Set C A + B .
e e e

Set X = 2A *B .
m T m

If X < 2-1017 - 108, set Cm = [(X/108) + 11/2 and exit.
Set C_ = [(X/log) + 17/2.
Set C =C + 1.

e e

Exit,



Commentary

4.

5-7.

Twice the product is computed to give a bit for round-
ing. The product has 72 bits. Note that the product
A-B has two whole digits and 16 decimal digits. Fur-
ther, since A and B are carried as integers, they both
contain a multiplicative factor of 108, giving the

product a factor of 1016.

If the first whole digit is zero, divide by 108 to
return to JNF. Otherwise, divide by 109 and increment
the exponent by 1. The test also ensures that rounding
will not propagate an overflow. The comparison is
double length: The most significant half of X is com-

pared against

2-107 . 108

Q
235

= 5820766,

while the least significant half of X is compared

against

17 8
R|ZL0 = 107 _ 5035650110,
235
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DIVIDE: C = A/B

Flow

1. Error if B = 0.

2. If A=20, set C = 0 and exit.

It
>
®
o]

3. Set C
s

4., Set C
e

I
>
t
los]

5. If Am 2 Bm’ set p

Il
oo

6. If A < B, setp
m m

i
e
oY)
3
Qs
@]

1

i

o

2-A -10P

7. C =1 ———€%~——— + 1| and exit.
m 2 Dm
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Commentary

5. Since both numbers are in JNF, if A 2 B, A~108/B
will be in JNF; if A < B, A-109/B will be in JNF.
The factor of 2 is for rounding. An alternative
approach to get the rounded result would be to

compute

A.10P + B/2
= )

The choice depends on the instruction repertoire of
a given machine. 1In either case, the product is,

of course, double length.
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EXPONENTIATE: C = A * B
Flow
Case Result
1 B =0. c =1
2 A=0; B<O Error
3 A=0; B>20 C =20
4, A =1, cC =1
5. B=1. C = A.
6. B=-1. c = 1/A.
7. A < 0; B not integral. Error.
8 A>0; B=5% C = SQRT(A).
9. A>0; B=-% C = 1/SQRT(A).
10. A = 210P; B integral. c, = 10P "B,
c, = A.
11. B integral; 1 < B = 29, Compute by multiplication,
12. B integral; -29 < B < -1, Compute by multiplication on
(1/4).
13. B integral; 29 > |B]. C_ = EXP_B-LOG(lA}) 1.
c =P

14. All others. C = EXP[B-L@G(A) 1.
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Commentary

1. 0% =1

7. B is integral if
a. B =8, or

e
I
b BeZO and REMW =0
10 €
8,9. JOSS SQRT routine.
11,12, The rationale for choosing B = 29 as the crossover
is that 229 can be represented exactly in JNF, while
230 cannot. Since 1 < |B| < 29, B is at most 5 bits.
The multiplication is done as follows:
a. If B <0, set A= 1/A and B = [B];
b. Set C = 1;
c. If B is odd, set C = A:C;
d. Shift B to the right one place (zeros enter
at the left);

e. Exit if B = O;
£. Set A = AZ;
g. To step c.
All multiplications and the division (step a) use the
JOSS arithmetic routines.

13. EXP and L@G are the JOSS exponential and logarithm

e . feven 11 [t

routines. If B is {odd }, CS will be iASj'

14. The LOG will error exit if A < 0O; EXP will error exit

36

if the result > 2 - 1,
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SQRT: C

Flow
1. Error if A < 0.

2. Set C

0 and exit if A = 0,

3. If A =odd, set A = 10'A and C = 109.
e m m m

4, 1If Ae even, set Cm = 108‘M10 + epsilon.
5. Set C, = ip(A_/2) and C, =+,

6. Iterate by

Exit from iteration when D < 104.

7. Exit if (10°-A)/C - ¢ <1,
m m m

8. Set C_ =C_ + 1 and exit,
m m
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Commentary

3,4.

7,8.

Cm is the initial guess for iteration. The addition of
an epsilon ensures that convergence will be from the
high side. This is necessary so that D (step 6) does
not go negative before converging. Epsilon may be deter-

mined empirically for a given implementation.
ip = integer part. This step is a right shift of 1 bit.

This is merely Newton's method. D is kept separate to
test for convergence. Newton's method for square root
doubles the number of correct digits at each iteration.

Hence, convergence is based on five correct digits in D.

It is given that X is an approximate, but possibly low,
— 2
value of \/N. Test to see which value, X2 or (X + 1),

is closer to N. If

N-X% > (X + 1) - N,

then
N - X2 > X2 + 2X + 1 - N,
2
2N - 2X" > 2X + 1,
N - X2 > X +-%-> X, X > 0,
g - X >1,

Thus, if this last condition is true, (X + 1)2 is closer
to N than Xz, so add one to the approximate value X to

obtain the required square root.
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IV, ELEMENTARY TRANSCENDENTAL FUNCTIONS

We wished, if possible, to use single-precision arith-
metic for the evaluation of the JOSS functions. In surveying
the field of rational approximations, we could not find ones
that (1) yield the desired accuracy and (2) had coefficients
that could be represented in 36-bit fixed point.

Continued fractions were considered and finally discarded

for several reasons:

1. For a given precision of a restricted range of argu-
ment, series evaluation appeared to be faster and
easier (primarily because the latter lends itself
so well to computer implementation).

2. For us, at least, it was much easier to determine
the precision of a given truncated series than for
a continued fraction.

3. The numerical range of results of intermediate com-
putations for series is both easier to determine and
smaller.

In general, the analyses were oriented toward achieving

a relative error on the order of 10_9. On the other hand, since
we were dealing with a finite word length and the approximations
required many operations, we attempted to obtain 35-bit accuracy
wherever possible--that is, (3-10_11) in all intermediate cal-
culations. Since we always had a restricted range of arguments,
the latter choice usually yielded better results. It is impor-

tant to recognize that no amount of analysis can substitute for

a great deal of care in coding, particularly in scaling for max-

imum precision.
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EXPONENTIAL: C = eA

Analzsis

The exponential is computed using the series approximation

k n
X X
¢ -~ Z nre
n=0

We always evaluated elxx, then took the reciprocal if X < 0,
The problem was to restrict the range of x, so that a fixed and
relatively small number of terms, k, would give the required

precision. Since

y = & = 10%/C = 10%.10F = 10%.F"C,
where C = 1In(10),
W = whole digits,
F = decimal digits,
x > 0,

we could immediately restrict the range to F-C, taking care of
lOw by adjusting the exponent in the JNF result.
The range O < F.C < 2.30258509 is still rather large, but

X _ (ex/é)é.

With F-C/4 < .576, k = 12 will give 36-bit precision. (Due to
the many operations involved and the use of single-precision
arithmetic, the precision is unattainable; however, care in

scaling and rounding nearly achieves it.)
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Flow
1. If A=0, set C =1 and exit,
2. If |A| > 230.258509: set C = 0 and exit if A < O
error exit if A > 0,

3. 1If Ae < -5, set C =1 + A and exit.

4, If Ae < 0, compute

A .2—11
X = —E%;EE—-, (denominator scaled at B&44)
10 ¢

c =0.

5. If Ae > 0, compute

_ 4 Ae_ A
A -27-10 (10 © scaled at B32)
C =Q , 8
e 108-ln(10)J (10" -1n(10) scaled at B28)
A
(4 2%.10 ©] o
X =R m8 10°.1n(10),
107 -1In(10)
X = [X:1In(10)]-2. (In(10) scaled at B3)
6. Compute
2 11
¥y = %T +.§T + ... +‘%§T, (scaled at B1)
yq = X-yo + 1, (rounded and scaled at Bl)
Yy = X-y1 + 1, (rounded and scaled at Bl)
_ 2.2
Y3 = (yz) . (rounded each step, scaled at B2, B4)
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7. If A = -:
s
Set Ce = —Ce,
Set y3 = 1/y3. (1 scaled at B8)
8. Set C_ =+,
S
9. Convert to JNF (routine S75) BT
10. Exit.
Commentary
. 100
2. Since a JNF number must be less than 10 , A must be
less than 100-1In(10) = 230.258509. Underflow is treated
as a zero.
| -5 2 -11 . .
3. For |X] <1077, X°/2 < 5-10 and contributes nothing.
Use the JOSS ADD routine to compute 1 + X.
4. 1If there are no whole digits, set Ce = (0 and convert Am/4
to a fraction by dividing by the appropriate power of 10.
Am is an integer and hence is scaled at B = 35:
A .2-35.2—11
m -2 A
— = A.2 =7
107 -2
5. [1If there are whole digits, convert A to nonscientific

notation by multiplying by the appropriate power of 10.
Keep a double precision product (scaled for the division

that is to follow):

"Routine §75 (see Appendix A) has as input Cg,, a binary

fraction, and a scale factor (-3 < B < 4); it outputs a JNF
number .
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235 4 e, -2 -63

A 2 10 €2 = A-2

m

. s s 8
Convert to whole numbers and fraction by dividing by 107,

then dividing the remainder by 108. To get A/1n(10), divide
by 108'1n(10):

-63
. A2 _ ,.n=35

W=2aQ g =5 = A-2

10 1n(10) -2
(that is, W = integer part),
. A-2-63
1 8 -28
0°1n(10) -2 _ 400
' 28 ©

1081n(10)-2‘

(that is, F = fraction part).
Multiply the fraction part by In(10) and divide by &4:

FC o rin@aoy-273.2 = F1n10) -2”

2
6. Evaluate the series and raise to the fourth power.

7. e_X = l/eX.
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LOGARITHM: C = 1n(A)

Analysis
Log is computed using the series approximation:

3

log(x) ~ 2-[2 +-§— +-§— + ---},
where
5 = X -1
X+ 1

The problem is to reduce the range of z. The solution

is based on the following relation: If X = v-lOP,
In(X) = In(v) + P-1n(10). (1)

In JNF, P = Ae; hence P-1n(10) is easy to obtain. Since
1 =v = 10, the range of

is 0 = w < .82, necessitating a considerable number of terms
in the series. A reduction may be obtained by applying the

definition:
In(v) = In(2% V) - a.1n(2) (2)
(we choose powers of 2 since they are merely a shift on a

binary computer). The minimum range on the interval

1 a
v < 2%y < 2y' occurs when



22—

b

v - 1) _j2:v' -1
v + 1 2.v' + 1

which yields v' = J/2/2.
Choosing a such that

J2/2 < 28 < /2

A

yields 0 < w < ,172, which reduces the number of terms of the
series to 7.

However, v lies in the range 1 < v < 10, so that a = 0
(that is, a right shift and lost precision). To change the

range of 2%.v, rewrite Eq. (2) as follows:

,a
ln(\)) = 1n —F-\) + (b - a)-ln(Z) (3)
2
and
- za_v _ 2b
22,y + 2P

The range of 2%.v would be
2® J3/2 < 2% < 2P 2.

Since v < 10, b = 3 ensures that a = 0 (that is, a left shift).
Combining Egqs. (1) and (3) yields

3 13
In(x) = P-In(10) + (3 - a)-In(2) +2.[z + ==+ -+ Sl P
where
a
7z = E Y ;_§,
28.v + 8
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and a is chosen such that

8' ,\/_g < 2a-\) < 8' ,\,’F:__)_—,

The chosen series yields very poor results for X close
tol X=1 2% ¢). Experimentation+ has shown that the range
997885258 < X < 1.00211474 can be considerably improved by
using the first three terms of the series

2 .3
log(l + X) =x-->2-<—+-’§<—.

We set Z = X - 1 and then evaluate

.2, T
2 3

using 'pseudo" JOSS arithmetic for the multiplications and
divisions, and JOSS arithmetic for the additions and sub-
tractions. ('"Pseudo' indicates that we take advantage of
our knowledge of ranges and that the results are not always
normalized or rounded.)

Finally, compute the first two terms of Eq. (4) to
"double precision'; that is, carry a whole number and a frac-
tion. The summing of the three terms, P-1In(10), (3 - a)-1In(2),
and the series, can be tricky in double precision on a 2's

complement machine, though the second term cannot be negative.

TThe crossover points are a function of the number of
digits in the JNF number, the precision of intermediate
quantities, and the order of computation. Hence, the final
determinations were done empirically.



-2/

Commentary

a. Error exit if A = 0.

b, If |A- 1| > = (= = 2.11474-1077)
Shift A to the left until A = 8-(2/2);

Set q = 3 - (number of shifts);

‘A - 108.87.22
Set X = —= 5 : (X will be scaled at B-2)
A + 10°-8
m
Set z = XZ; (rounded and scaled at BO)

Set s = z6/l3 + 22/11 + ... z/3; (all constants scaled at B-1)
1 35)2-1

Set y = (s-X:27" + X % 2 = 1n(A ); (v scaled at BO)

In(A) = q-1n(2) + Ae'ln(lo) + v,

where the first two terms are double precision, B35.

Set C_ = sign of 1n(A); X = |1n(A) | .

(3 if 100 < X,

22 if 10 < X < 100,
1if 1 < X < 10,
(O if X < 1,

Set C
e

C

Set X = X/10 € (single precision, BO).

Convert to JNF by means of routine S75 and exit.
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CIRCULAR SINE, COSINE: C = sin(A); C = cos(A)

Analysis

We arbitrarily decided that |A| = 100 would result in

an error exit, to warn the user of potential loss of precision.

The series

3 5 11

. X X
Sln(X>NX“'3‘T+3‘F""‘T?a
X2 X4 X10
cos(x) ~1-gr+gT- - gm

can be evaluated by means of two tables:

and

) 1 1
T- 1,5,’3‘, --.,'ﬁ,

.11 1
2?2 3,2 4.3° "2 10.9°

and the following algorithm:

1.

2.

8.

Thus, for n =

Input n.
Set z = X?.
Set s = T_ = 1/n.
n

Set n =n - 2.

1
Set s = -s.2.T_ + T_.

n n
If n =2, set s = (1 - z-8) and exit.
Ifn=1, set s = X-z and exit.
To step 4.

10, the cos series will be evaluated;

the sin series will be evaluated.

for n

11,
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For X < v /4, the error in truncating the series will be

less than

X12

10
12! ’

~ 1.2-10"

The algorithm for reducing the input, A, is as follows:

1. If sin, set CS = AS and n = 11.

i

2. 1If cos, set Cs + and n = 10.
3. Set y = R(A/2m).
4, Ify>m:

Set y = 21 - y;

Invert Cs’ ifn=11.
5. Ify > n/2:

Set y =11 - vy;

Invert Cs’ if n = 10.
6. Ify>nlb:

Set y = n/2 - y;

Set n = 11, if n = 10;

Set n = 10, if n = 11.

Steps 1 to 5 reduce the argument to the first quadrant adjust-
ing the sign of the answer as needed. Step 6 takes the opposite
function of (/2 - y) if y > n/4.

For X = ¢, the sin will not be as accurate as necesséry.

Hence (for sin only) we have the following special case: If

X < 21072,

2
\
/

sin(X) = (1 --%—f.x.
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The evaluation of -X2/6 is done using ''pseudo' JOSS
arithmetic, and the remainder of the evaluation with JOSS

arithmetic.

Commentary

a. If A.e < 0, compute
A 27
- . m

y --——Iag—. (y scaled at B4)

Then if A, < 0, compute

_ .2-32

y = X“TK—T- (result scaled at Bl)

10 €
Go to compare against m/4.
1f A.e = 0, compute

-34 -

y = Riz;%g—— . (result, 2n scaled at B3)

Go to compare against 1.

b. If Ae > 0, compute

10-4 277
ST
r-X. 2"31
y = Rt“j;“‘]- (y, 2m scaled at B3)

Go to compare against .

¢. Note that

27 (B3) = m(B2) = T(BL),

and

I
1l

m(B3) %(BZ) 7(B1).
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d. (Refer to step 4 of the reduction algorithm given on
page 26.)

If y(B3) > m(B3), set y = 21 - y; invert C, if n = 11,
Set y = 2-y.
If y(B2) > m/2(B2), and so forth.
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ARGUMENT: C = arg(A, B)

Analysis

The arg function computes the angle between the x axis
and the line from the origin to the peint x, y. The result
1s positive in the first and second quadrants and negative
in the third and fourth quadrants. Hence -T < arg(x, y) < W,
and arg(0, 0) is defined to be equal to 0. Use the series

3 5
tan"tz=z- 2+, 22 <1,
where Z = y/x. To meet the constraint that Z2 < 1, compute
. 2 2
z = =% if <
y s
and
=T -1
arg(x, y) = 5 - tan © Z

2 2y . .
((x® = y°) is treated as a special case).
Since this series converges slowly, again reduce the
range. The following relations are pertinent:

l. Let o = tan_l Z= 86+ B, Then Z = tan(e + B).

2. Let k = tan 6. Then

7 = k + tan 8
1l - k tan B’
- -1 Z - k
B tan (T_$—27E>’
o= 6t tan (). (5)

Though the derivation is not shown here, Eq. (5) holds
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equally well for a = 6 - B, For

S0 L. 2 T
557 % 3 570 0 7

max [ki - ki-l' < .098.

Hence, for

o

¢ =0, 0 2z o
Uj O; 6’ 16° " 2 4>

if we choose kj such that

{kj - z| = |k; -z for i

“H
L
-

then
lkj - 7| < .098,

and for Z > O,

1z - k.|

WTJ?—Z.‘I]«‘J?

< .,098,

and six terms of the series will suffice.

The following are treated as special cases:

arg(0, 0) = 0;

arg(0, y) = =n/2 (depending on sign of y);

arg(x, 0) = 0 or m (depending on sign of x);

arg(x, y) = #n-(n/4), if x2 = y2 (n and sign determined
by quadrant);

tan L w =y if w = 107°.
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Commentary

The correct quadrant is determined from Al and B_.
1f |A| < |B|, interchange A and B and adjust the quadrant
by adding 4. Compute a using Z = |[B|/]A|. Then

Quadrant arg (A, B)
1 a
2 o= G
3 -7+ a
4 -Q
5 /2 - a
6 /2 + a
7 -n/2 - «a
8 -1/2 + o

Note that arg(A, B) = d + m-a. On a complement machine,
with an index register and an "execute' instruction, one
can execute an indexed table that complements or not,

as m is + or -, and a second table that adds the appro-
priate d.
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V. NUMBER DISSECTION FUNCTIONS

The number dissection functions in JOSS, especially
when coupled with the ability to append an "if'' clause
to virtually any statement, provide an example of how a
sophisticated tool may be supplied to the user with trivial

expenditure of programming effort.

INTEGER PART: C = ip(A)

Flow
1. If A= 0, set C = 0 and exit.

2. 1f A_e < 0, set C = 0 and exit,

3. If A.e 2 8, set C A and exit.

Am 8-A
= . e-
4, Set Cm Q Y 10 5
10 €
Set CS = AS;
Set C_ = .
e e
5. Exit.
DIGIT PART: C = dp(A)
Flow
1. Set Cm = AmS
Set CS = AS;
Set ¢ = 0.
e

2. Exit.



Flow

Flow

w N et
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FRACTIONAL PART: C = fp(A)

If A= 0, set C = 0 and exit.
If Ae <0, set C = A and exit.
1f A.e z 8, set C = 0 and exit.
Ae+1.

Rz |10
10 ¢

Set Cm

Set CS = AS;
Set C_ = -1,

e
If Cm =0, set C = 0.

Exit.

SIGNUM: C = sgn(A)

If A= 0, set C = 0 and exit.
If AS = -, set C = -1 and exit.

Set C = +1 and exit.



Flow
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EXPONENT PART:

C = xp(a)

If A= 0, set C = 0 and exit,

If A
e

Set
Set
If A
e

Set

Set

If C
m

Set Ce

Set

If Ch

Set
Set

Exit.

< 0:
C =
S
C =
m
=z 0:
C =
S

i

C
m

= 10:

Cm =

< 10:

Ce =

I

Cm



Appendix
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Appendix A
ROUTINE S75: CONVERT TO JNF

Most function routines compute a binary answer at some
scale factor and must be converted and normalized to JNF.
Routine S75 performs this function.

Input X = positive fraction,

B = binary scale factor (-3 = B = 4),

C

e existing scale factor.

Flow

1, If X= 20, set C = 0 and exit.

2, Set Co = Ce - 1.
3. Compute y = X-(Z'lOg)-ZB (double length).(2-109 scaled at B35)
4. 1f y < 2-108:

a. Compute y = 10'y, + most significant half of (10~y2),
where y; = most significant half of y,
yé = least significant half of y.

Set Ce = Ce - 1.

b. If y =0, set C = 0 and exit.

c. Ify < 2-108, set y = 10.y and C. = c. - 1.

d. Repeat step ¢ until y = 2-108.

Il
@
-+
}-—I

5. If y = 2:10° - 1, set y = y/10 and C_
6. Repeat step 5 until y < 2'109 - 1.
7. Set C_ = (y + 1)/2 and exit.

(CS is handled externally.)
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Commentary

2. Ce must be adjusted, since 109 is the multiplier rather

than 103,

3. The result of this step will be a double-length product
scaled at B35. The factor of 2 supplies an extra bit
for rounding.

4. If normalization is required, bring in only one decimal
digit from the least significant half. To determine
the effect of this, first note that the multiplier is
2-1010; hence, look for an n such that

20,100 <1,

2.1010 < o7

n = 35,

Since the maximum right shift in step 3 is 3, we lose,
at most, 3 bits from the input 35-bit X.

5-6. Scale down, ensuring that rounding will not propagate

a carry.

7. Round.
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Appendix B
TECHNIQUES FOR SERIES EVALUATION

The following two algorithms for evaluating series

on a computer should aid the novice. Extension to other

series should not be difficult, once these are understood,

Set n = k,

Set s = 1/n.

100OP: Set n=n - 1.

If n = 0, set s = s.X and exit.

Set s = s°X + 1/n and go to LOOP.

N
I~ =
QJN

Set n = k,

Set s = 1/n.

LOOP: Setn=n - 1.

If n = 0, set s = g.X and exit.

Set s = (s:X *+ 1)-(1/n) and go to LOOP.

For most series, 1/n is stored in a table and stepped
through by indexing, although some instruction sets may

make it appropriate to do division by n.
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The series are summed from k down to 1. In general,
this aids in ensuring that the contribution of the smaller

terms is not ignored--especially when variable scaling is
used from term to term.
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